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Definition. By a ring we mean a set R of no fewer than two elements, together

with two binary operations called the addition and multiplication, in which

(1) R is an abelian group with respect to the addition.

(2) R is a semigroup with unit with respect to the multiplication.

(3) (x+ y)z = xz + yz and x(y + z) = xy + xz for all x, y, z ∈ R.

From the last postulate

0x = (0 + 0)x = 0x+ 0x and x0 = x(0 + 0) = x0 + x0,

it follows that

0x = x0 = 0

for every x ∈ R.
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Example. For an abelian additive group G, we denote by End(G) the set of
group endomorphisms of G. With the addition defined by

(f + g)(x) = f(x) + g(x)

and the multiplication defined by

(fg)(x) = f(g(x))

for all f, g ∈ End(G) and x ∈ G, the set End(G) forms a ring.

The left distributiveness in End(G) follows from the additivity of group endo-
morphisms

(f(g + h))(x) = f(g(x) + h(x)) = f(g(x)) + f(h(x)) = (fg + fh)(x)

for all f, g, h ∈ End(G) and x ∈ G.

From the additivity of group endomorphisms

f(0) = f(0 + 0) = f(0) + f(0),

it follows that

f(0) = 0

for every f ∈ End(G).
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Example. For a (not necessarily abelian) additive group G, we denote by M0(G)
the set of maps from G into itself preserving 0

M0(G) =
{
f : G→ G | f(0) = 0

}
.

With the addition defined by

(f + g)(x) = f(x) + g(x)

for all f, g ∈M0(G) and x ∈ G, the set M0(G) forms a (not necessarily abelian)
group.

With the multiplication defined by

(fg)(x) = f(g(x))

for all f, g ∈ M0(G) and x ∈ G, the set M0(G) forms a semigroup with unit
idG : G→ G, idG(x) = x for every x ∈ G.
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The right distributiveness in M0(G) follows from both definitions of the addi-
tion and multiplication in M0(G)

((f + g)h)(x) = (f + g)(h(x)) = f(h(x)) + g(h(x)) = (fh+ gh)(x)

for all f, g, h ∈M0(G) and x ∈ G.

The left distributiveness in M0(G) does not hold

(f(g + h))(x) = f(g(x) + h(x)) 6= f(g(x)) + f(h(x)) = (fg + fh)(x)

where f, g, h ∈M0(G) and x ∈ G, unless f is a group endomorphism of G.

For the zero map 0G : G → G, 0G(x) = 0 where x ∈ G, from the definition of
the set M0(G), it follows that

(f0G)(x) = f(0) = 0 = 0G(x)

for all f ∈M0(G) and x ∈ G.
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Definition. By a near ring we mean a set N of no fewer than two elements,

together with two binary operations called the addition and multiplication, in

which

(1) N is a (not necessarily abelian) group with respect to the addition.

(2) N is a semigroup with unit with respect to the multiplication.

(3) (x+ y)z = xz + yz for all x, y, z ∈ N .

(4) x0 = 0 for every x ∈ N . This postulate means that we require a near ring

to be zerosymmetric.

From the third postulate 0x = (0 + 0)x = 0x+ 0x, it follows that

0x = 0

for every x ∈ R.
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Definition. By a nondistributive ring we mean a set N of no fewer than two

elements, together with two binary operations called the addition and multi-

plication, in which

(1) N is a (not necessarily abelian) group with respect to the addition, with

the neutral element denoted by 0.

(2) N is a semigroup with unit with respect to the multiplication, with the

neutral element denoted by 1.

(3) 0x = x0 = 0 for every x ∈ N . This postulate is called zerosymmetric.

We say that a nondistributive ring is abelian (respectively, commutative) if

the additive group mentioned above is abelian (respectively, the multiplicative

semigroup mentioned above is commutative).
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Example. For a nonempty set X with a fixed element 0, we denote by Map0(X)
the set of maps from X into itself preserving 0

Map0(X) =
{
f : X → X | f(0) = 0

}
.

With the multiplication defined by

(fg)(x) = f(g(x))

for all f, g ∈ Map0(X) and x ∈ X, the set Map0(X) forms a semigroup with
unit idX : X → X, idX(x) = x for every x ∈ X.

For the zero map 0X : X → X, 0X(x) = 0 where x ∈ X, we have

(0Xf)(x) = 0 = 0X(x)

and

(f0X)(x) = f(0) = 0 = 0X(x)

where f ∈Map0(X) and x ∈ X.
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Assume that elements of the set Map0(X) are indexed by elements of an

additive group G, with the zero map 0X = f0. We can make the above as-

sumption, since every nonempty set admits a group structure (the statement

is equivalent to the Axiom of Choice). With the addition defined by

fa + fb = fa+b

for all a, b ∈ G, the set Map0(X) forms a group with the neutral element

f0 = 0X.

All of this means that the set Map0(X) together with both operations, the

addition and multiplication, defined above is a nondistributive ring.
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For a nondistributive ring N , we denote by N+ the additive group of N .

A well known result in the ring theory asserts that

(1) every ring R is isomorphic to the ring End(RR) of endomorphisms of R

viewed as a right module over itself.

(2) End(RR) is a subring of the ring End(R+) of group endomorphisms of R+.
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Example. For a nondistributive ring N , we denote by r.Hom(N) the set of

right homogeneous maps from N into itself

r.Hom(N) =
{
f : N → N | f(xn) = f(x)n for all n, x ∈ N

}
.

With the multiplication defined by

(fg)(x) = f(g(x))

for all f, g ∈ r.Hom(N) and x ∈ N , the set r.Hom(N) forms a semigroup with

unit idN : N → N , idN(x) = x and zero 0N : N → N , 0N(x) = 0 for every x ∈ N .
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We define a map λ : N → r.Hom(N) by sending m ∈ N to the left multiplication

λm : N → N on N defined by λm(x) = mx for every x ∈ N . Since

λm(xn) = m(xn) = (mx)n = λm(x)n

for all m,n, x ∈ N , we have indeed λm ∈ r.Hom(N). Since λ0 = 0N , λ1 = idN
and

λmn(x) = (mn)x = m(nx) = (λmλn)(x)

for all m,n, x ∈ N , it follows that the map λ is a semigroup homomorphism. It

is also evident that for all m,n ∈ N if λm = λn, then

m = λm(1) = λn(1) = n,

and that

f(x) = f(1)x = λf(1)(x)

for all f ∈ r.Hom(N), x ∈ N .

12



All of this means that λ : N → r.Hom(N) is a semigroup isomorphism, and, in

consequence, elements of the set r.Hom(N) are indexed by elements of the

additive group N+. With the addition defined by

λm + λn = λm+n

for all m,n ∈ N+, the semigroup r.Hom(N) forms a nondistributive ring iso-

morphic to N .
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Theorem. Every nondistributive ring N embeds into the nondistributive ring

Map0(N) of maps from N , viewed as a set, into itself preserving 0.

Proof. According to the previous example, the map λ : N → r.Hom(N) defined

by λ(m) = λm for every m ∈ N is a nondistributive ring isomorphism.

It is also evident that r.Hom(N) is a subsemigroup of the multiplicative semi-

group Map0(N) with unit idN and zero 0N .

If Map0(N) is an infinite set and if F(Map0(N)) denotes the ring (without

unit) of finite subsets of Map0(N), then N+ × F(Map0(N))+ is a group of

order ∣∣∣N+ ×F(Map0(N))+
∣∣∣ =

∣∣∣F(Map0(N))+
∣∣∣ =

∣∣∣Map0(N)
∣∣∣,

which means that elements of the set Map0(N) can be indexed by elements of

the additive group N+×F(Map0(N))+, with fm = λm for every m ∈ N+. From

this we conclude that r.Hom(N) ⊆ Map0(N) also viewed as nondistributive

rings.

The same conclusion holds if Map0(N) is a finite set.
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Example. For a nonempty and finite set X =
{
x1, x2, . . . , xn

}
, we denote by

P(X) the family of subsets of X.

With the multiplication defined by

AB = A ∩B
for all A,B ∈ P(X), the set P(X) forms a commutative semigroup with unit
X and zero ∅.

Assume that elements of the set P(X) are indexed by elements of Z/2Z×Z/2Z×
. . .×Z/2Z, the direct product of n-copies of the additive group Z/2Z as follows:
for all i ∈ {1,2, . . . , n} and ε1, ε2, . . . , εn ∈ Z/2Z we write xi ∈ A(ε1,ε2,...,εn) if and
only if εi = 1. Then the addition defined by

A(ε1,ε2,...,εn) +A(η1,η2,...,ηn) = A(ε1+η1,ε2+η2,...,εn+ηn)

coincides with the symmetric difference

A(ε1,ε2,...,εn)4A(η1,η2,...,ηn) =

=
(
A(ε1,ε2,...,εn) \A(η1,η2,...,ηn)

)
∪
(
A(η1,η2,...,ηn) \A(ε1,ε2,...,εn)

)
.

All this means that the set P(X) together with both operations, the addition
and multiplication, defined above is a commutative ring.
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Example. Let P(X) be the same commutative semigroup with unit and zero

as previously.

Assume that this time elements of the set P(X) are indexed by elements of

the group D8 × Z/2Z× Z/2Z× . . .× Z/2Z, where

D8 =
{
σ0 = (1), σ1 = (1,2,3,4), σ2 = (1,3)(2,4), σ3 = (1,4,3,2),

σ4 = (2,4), σ5 = (1,2)(3,4), σ6 = (1,3), σ7 = (1,4)(2,3)
}

is the dihedral group of order eight, provided that ∅ = A(σ0,0,0,...,0). With the

addition defined by

A(σi,ε1,ε2,...,εn−3) +A(σj,η1,η2,...,ηn−3) = A(σiσj,ε1+η1,ε2+η2,...,εn−3+ηn−3),

for all A(σi,ε1,ε2,...,εn−3), A(σj,η1,η2,...,ηn−3) ∈ P(X), the set P(X) forms a non-

abelian group with the neutral element A(σ0,0,0,...,0) = ∅.
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All of this means that the set P(X) together with both operations, the ad-

dition and multiplication, deifned above is a nonabelian and commutative

nondistributive ring.

If the distibutiveness held in P(X), writing Aσi instead of A(σi,0,0,...,0) for every

i ∈ {0,1,2, . . . ,7}, we would obtain

Aσ1Aσ2 = Aσ1(Aσ1 +Aσ1) = Aσ1Aσ1 +Aσ1Aσ1 = Aσ1 ∩Aσ1 +Aσ1 ∩Aσ1 =

= Aσ1 +Aσ1 = Aσ2

and thus

Aσ2 = Aσ2 ∩Aσ2 = (Aσ1 +Aσ1)Aσ2 = Aσ1Aσ2 +Aσ1Aσ2 = Aσ2 +Aσ2 = Aσ0,

a contradiction.
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Example. Let Q8∪{0} be the noncommutative semigroup with unit and zero,

obtained from the quaternion group

Q8 =
{
± 1,±i,±j,±k

}
of order eight by adjoining the zero element.

Assume that elements of the set Q8∪{0} are indexed by elements of the group

Z/3Z× Z/3Z as follows:

x(0,0) = 0, x(1,0) = 1, x(2,0) = −1
x(0,1) = −i, x(0,2) = i, x(1,1) = −j
x(2,2) = j, x(2,1) = −k, x(1,2) = k.
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With the addition defined by

x(a,b) + x(c,d) = x(a+c,b+d)

for all a, b, c, d ∈ Z/3Z, the set Q8 ∪ {0} forms an abelian group.

All of this means that the set Q8 ∪ {0} together with both operations, the
addition and multiplication, defined above is an abelian and noncommutative
near field.

The left distributiveness does not hold since

i(1 + i) = ik = −j
but

i+ i2 = i− 1 = j.
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Definition. Let N be a nondistributive ring, and let S ⊆ N be a multiplicatively
closed set. We call a nondistributive ring S−1N a nondistributive ring of left
quotients of N with respect to S if there exists a homomorphism η : N → S−1N

of nondistributive rings, for which

(1) η(s) is invertible in S−1N for every s ∈ S.

(2) η(s) is left distributive in S−1N for every s ∈ S.

(3) every element of S−1N is of the form η(s)−1η(n) where n ∈ N and s ∈ S.

(4) ker η=
{
n ∈ N | r(s+ n) = rs for some r, s ∈ S

}
.
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For a multiplicatively closed set S in a nondistributive ring N , we let

U =
{
n ∈ N | r2(s2 + nr1 − s1) = r2s2 for some r2, s2 ∈ S

}
⊇ S.

Theorem. A nondistributive ring N has a nondistributive ring of left quotients
S−1N with respect to a multiplicatively closed set S ⊆ N if and only if S
satisfies the following conditions

(1) for all n ∈ N and s ∈ S there exist n1 ∈ N and s1, r2, s2 ∈ S such that
r2(s2 + n1s− s1n) = r2s2.

(2) for all m,n ∈ N and s ∈ U there exist r1, s1 ∈ S such that r1(s1 + s(m +
n)− sn− sm) = r1s1.

(3) for all m,n ∈ N if r(s + tmu − tnu) = rs for some r, s, t, u ∈ S, then
r1(s1 +m− n) = r1s1 for some r1, s1 ∈ S.

(4) for all m,n ∈ N if r(s + m) = rs and t(u + n) = tu for some r, s, t, u ∈ S,
then r1(s1 +m− n) = r1s1 for some r1, s1 ∈ S.
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(5) for all m,n ∈ N if r(s+n) = rs for some r, s ∈ S, then r1(s1 +m+n−m) =

r1s1 for some r1, s1 ∈ S.

(6) for all k, l,m, n ∈ N if r(s + m − n) = rs for some r, s ∈ S, then r1(s1 +

kml− knl) = r1s1 for some r1, s1 ∈ S.

The additional assumption that N is an abelian nondistributive ring (respec-

tively, a commutative nondistributive ring, a left nearring, a right nearring)

implies the same for S−1N .
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Corollary. If S is a multiplicatively closed set in a nondistributive ring N , and
if every element of the set U defined above is left distributive in N , then the
nondistributive ring of left quotients S−1N exists if and only if S satisfies the
following conditions

(1) for all n ∈ and s ∈ S there exist n1 ∈ N and s1 ∈ S such that n1s =
s1n. Analogously as in the ring theory, we call this postulate the left Ore
condition with respect to S.

(2) for all m,n ∈ N if ms = ns for some s ∈ S, then s1m = s1n for some
s1 ∈ S.

Corollary. If S is a multiplicatively closed set of right cancellable elements in
a nondistributive ring N , and if every element of the set U defined above
is left distributive in N , then the nondistributive ring of left quotients S−1N

exists if and only if N satisfies the left Ore condition with respect to S. Under
the additional assumption that every element of S is also left cancellable, the
nondistributive ring N embeds into the nondistributive ring of left quotients
S−1N .
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Corollary. If a nondistributive ring N satisfies both the right cancellation law

and the left Ore condition with respect to a multiplicatively closed set S ⊆ N ,

and if every element of the set U defined above is left distributive in N , then

(1) every element of U is also left cancellable.

(2) the nondistributive ring N embeds into the nondistributive ring of left

quotients S−1N .
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Example. Any (not necessarily unital) ring R, in which the circle operation

x ◦ y = x+ y − xy

where x, y ∈ R, substitutes for the multiplication, satisfies only the first two of

postulates from the definition of a nondistributive ring.

The neutral element of the addition is also the neutral element of the circle

operation.
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